APPLICAZIONI DEL TEOREMA DI PITAGORA

figura geometrica	individuazione del triangolo rettangolo	applicazione del T. di Pitagora
h d b rettangolo	h=cateto b=cateto d= ipotenusa	$d = \sqrt{b^2 + h^2}$ $h = \sqrt{d^2 - b^2}$ $b = \sqrt{d^2 - h^2}$
l d l quadrato.	I = cateto d = ipotenusa	$d = \sqrt{\ell^2 + \ell^2} =$ $d = \sqrt{2}\ell^2 = \ell\sqrt{2}$ $\ell = \frac{d}{\sqrt{2}}$
d, d, c	$\frac{d_1}{2}$ = cateto $\frac{d_2}{2}$ = cateto ℓ = inotenusa	$\ell = \sqrt{\left(\frac{d}{2}\right)^2 + \left(\frac{d}{2}\right)^2}$ $\frac{d}{2} = \sqrt{\ell^2 - \left(\frac{d}{2}\right)^2}$ $\frac{d}{2} = \sqrt{\ell^2 - \left(\frac{d}{2}\right)^2}$
h l l l l l l l l l l l l l l l l l l l	h = cateto l _y - l _y = cateto l = ipotenusa	$\ell = \sqrt{h^2 + (\ell_3 - \ell_3)^2}$ $h = \sqrt{\ell^2 - (\ell_4 - \ell_3)^2}$ $\ell - \ell_4 = \sqrt{\ell^2 - h^2}$
h & & & & & & & & & & & & & & & & & & &	$h = \text{cateto}$ $\frac{b_2 - b_q}{2} = \text{cateto}$ $\ell = \text{ipotenusa}$	$\ell = \sqrt{\kappa^2 + \left(\frac{\kappa_2 - \kappa_1}{2}\right)^2}$ $\kappa = \sqrt{\ell^2 - \left(\frac{\kappa_2 - \kappa_1}{2}\right)^2}$ $\frac{\kappa_2 - \kappa_1}{2} = \sqrt{\ell^2 - \kappa^2}$
triangolo rettangolo a li 2r inscritto in una semicirconferenza	a = cateto b = cateto 2r = ipotenusa	$2r = \sqrt{a^2 + b^2}$ $a = \sqrt{(2r)^2 - b^2}$ $b = \sqrt{(2r)^2 - a^2}$